MedDRA® Coding Quality: How to Avoid Common Pitfalls

Patricia Mozzicato, MD
Chief Medical Officer
MedDRA MSSO

Disclaimer

• The views and opinions expressed in the following PowerPoint slides are those of the individual presenter and should not be attributed to Drug Information Association, Inc. (“DIA”), its directors, officers, employees, volunteers, members, chapters, councils, Special Interest Area Communities or affiliates, or any organization with which the presenter is employed or affiliated.

• These PowerPoint slides are the intellectual property of the individual presenter and are protected under the copyright laws of the United States of America and other countries. Used by permission. All rights reserved. Drug Information Association, Drug Information Association Inc., DIA and DIA logo are registered trademarks. All other trademarks are the property of their respective owners.
Data Quality in Clinical Development

- Highly regulated environment with strong emphasis on safety surveillance and data quality
- Applies to clinical trials and post-marketing arena
- Increasing harmonization of safety reporting regulations globally

What is Meant by Good Quality Data?

- Complete
- Accurate
- Diagnosis supported by appropriate investigations
- Causality assessment for adverse events
Coding of Clinical Trial Data

- Most data entered on Case Report Forms are “coded” in some form
- Facilitates storage, retrieval, analysis, and presentation of data
- Some coding is performed by investigators at point of data entry
 - For example, numeric codes for severity of adverse event: 1 = mild, 2 = moderate, etc.
- Other coding of text data is performed by sponsor company after data collection
- **Accuracy of initial coding determines accuracy of analysis**

Quality of Input = Quality of Output
MedDRA Definition

MedDRA is a clinically-validated international medical terminology used by regulatory authorities and the regulated biopharmaceutical industry. The terminology is used through the entire regulatory process, from pre-marketing to post-marketing, and for data entry, retrieval, evaluation, and presentation.

Key Features of MedDRA

- Structure facilitates data analysis and reporting and electronic communication
- Large terminology with >69,000 terms at lowest level – allows greater specificity
- Approx. 19,000 Preferred Terms (PTs), each representing a unique medical concept
- Used for coding adverse events, signs and symptoms, procedures, investigations, indications, medical and social histories, medication errors and product quality issues
MedDRA Structure

SOC = Cardiac disorders

HLGT = Cardiac arrhythmias

HLT = Rate and rhythm disorders NEC

PT = Arrhythmia

MedDRA Structure (cont)

- **SOC** Musculoskeletal and connective tissue disorders
 - (a) Bone disorders (excl congenital and fractures)
 - (b) Connective tissue disorders (excl congenital)
 - (c) Fractures
 - (d) Joint disorders
 - (e) Muscle disorders
 - (i) Muscle infections and inflammations
 - (ii) Muscle injuries
 - (iii) Muscle pains
 - (a) Fibromyalgia
 - (ii) Fibromyalgia
 - (iii) Fibromyalgia syndrome
 - (iv) Fibromyalgia worsened
 - (v) Fibromyositis
 - (vi) Fibrositis
 - (vii) Muscular rheumatism
 - (viii) Myalgia
 - (ix) Myalgia intercostal
 - (x) Myofascial pain syndrome
Problems With Coding Data

- Appropriate coding requires clear initial data
- What is clear to investigator at point of data entry may be unclear to sponsor at point of data coding
- Sponsor must only code reported verbatim term; not permitted to interpret or draw information from other sources
- Example: Ambiguous information
 - Congestion (nasal, liver, sinus, pulmonary?)
 - Cramp (muscle, menstrual, abdominal?)
 - Pain (pain where?)

Problems With Coding Data (cont)

- Example: Ambiguous abbreviations
 - MI (myocardial infarction or mitral incompetence?)
 - GU pain (gastric ulcer pain or genito-urinary pain?)
 - Decreased BS (breath sounds, bowel sounds or blood sugar?)
- Exercise caution with abbreviations that could be misinterpreted
- ECG, COPD, HIV are examples of standard abbreviations
Problems With Coding Data (cont)

• Example: Vague information
 – Patient felt “fuzzy”, “weird”, “experienced every adverse event”
 Try to use accepted medical terminology

• Example: Non-specific information
 – “Left wrist edema” (coded as LLT *Peripheral edema*)
 – More specific - “Injection site edema left wrist”
 (coded as LLT *Injection site edema*)

Problems With Coding Data (cont)

• Death, hospitalization, and disability are outcomes and are not usually considered to be adverse events
• Provide details of underlying event, if known
• Examples:
 – “Death due to myocardial infarction” (Coded as LLT *Myocardial infarction* with death captured as outcome)
 – “Hospitalization due to congestive heart failure” (Coded as *Congestive heart failure* with hospitalization captured as outcome)
Problems With Coding Data (cont)

• Example: Ambiguous laboratory data
 – “Glucose of 40”
 – (Source of specimen - blood, urine, CSF? What units?)
 – Would have to code as LLT *Glucose abnormal* if additional clarification is not obtained

• Example: Conflicting laboratory data
 – “Hyperkalemia with serum potassium of 1.6 mEq/L”
 – Would have to code as LLT *Serum potassium abnormal*

If using numeric values, provide units and reference range. Be specific about specimen source and diagnostic result/clinical diagnosis.

Problems With Coding Data (cont)

• Example: Combination terms
 – Diarrhea, nausea and vomiting

Try to avoid combination terms – these will have to be split into three individual terms

Diarrhea
Nausea
Vomiting
Reporting a Specific Diagnosis

- Where possible, report most important medical event or specific diagnosis rather than individual signs and symptoms
- Can provide provisional diagnosis, e.g., “possible”, “presumed”, “rule out”
- Accuracy is important in preventing dilution of safety signals or generating false signals

<table>
<thead>
<tr>
<th>SIGNS and SYMPTOMS</th>
<th>DIAGNOSIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chest pain, dyspnea, diaphoresis, ECG changes</td>
<td>Myocardial infarction</td>
</tr>
</tbody>
</table>

Benefits of Quality Data

- Accuracy in diagnosis is important for detection and evaluation of safety signals
- Accurate and timely information on issues that affect conduct of clinical trial and affect patient safety
- Improved communication among sponsors, investigators, and regulatory agencies about medicinal products
 - Ensures accuracy of information about product including investigators’ brochures and prescribing information
 - Benefits medical professionals and patients
How to Achieve Quality in MedDRA Coding

• Quality assurance steps
• Coding conventions
• Synonym lists

Quality Assurance Steps

• Coding QA reports
• Human oversight of automated coding results
 – E.g., “Adrenal insufficiency secondary to chronic traditional medication intake” autoencoded as LLT Secondary adrenal insufficiency
 – Secondary adrenal insufficiency is based on lack of ACTH or CRH
 – Better term is LLT Adrenal insufficiency
Quality Assurance Steps (cont)

- Qualification of coder/review staff
- Errors in MedDRA should be addressed by submission of Change Requests to MSSO; no *ad hoc* structural alterations to MedDRA

MedDRA Coding Conventions

- Differences in medical aptitude of coders
- Consistency concerns (many more “choices” to manually code terms in MedDRA compared to older terminologies)
- Even with an autoencoder, may still need manual coding
- Should be consistent with ICH’s MedDRA Term Selection: Points to Consider document
Synonym Lists

• Can be derived from existing term lists or directly from verbatims
• For recurring, but unusual, verbatims – one-time assignment to a MedDRA term
• Enforces consistency by limiting choices once MedDRA term is assigned
• Increases likelihood of autoencoding “hit”
• Natural outgrowth of a legacy data conversion
• Maintenance required

In Summary…

• Quality of initial data and quality of coding ultimately affect quality of analysis
• Be aware of potential pitfalls in coding with MedDRA
• There are ways to address quality issues such as coding conventions, etc.
Quality Data

IN

OUT

Thank You